B.A/B.Sc.1st Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH1CC02 (Algebra)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	Answe	er any six questions: $6 \times 5 = 30$	
(a)		Show that there does not exist any surjective map from a set X to its power set $\mathcal{P}(X)$.	[5]
(b)		If α , β , γ are the roots of the equation	
		$x^3 - 7x^2 + x - 5 = 0,$	
		find the equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$.	[5]
(c)		Show that for all odd integers n , $gcd(3n,3n+2)=1$.	[5]
(d)		Calculate the Sturm's function and locate the position of the real roots of the equation $x^3 - 3x - 1 = 0$.	[5]
(e)		Show that $\{(1, \alpha, \alpha^2), (1, \beta, \beta^2), (1, \gamma, \gamma^2)\}$ is a linearly independent subset of \mathbb{R}^3 for all distinct real numbers α, β, γ .	[5]
(f)		State and prove De Moivre's theorem for integral values of index.	[1+4]
(g)		Show that the eigenvalues of a real symmetric matrix are real. Is the converse true? Justify your answer.	[3+2]
(h)		If p is prime and p divides ab , where a and b are integers. Prove that either p divides a or p divides b .	[5]
2 . A	Answer	any three questions: $10 \times 3 = 30$	
(a)	(i)	For any eigenvalue α of matrix $A = (a_{i,j})_{n \times n}$, show that the set of all eigenvectors of A belonging to α is a subspace of \mathbb{R}^n .	[4]
	(ii)	State Caley-Hamilton theorem. Using it, determine the inverse of the matrix, $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	[1+5]
(b)	(i)	Let X be an eigenvector of an $n \times n$ real matrix A associated with an eigenvalue α . Prove that $P^{-1}X$ is an eigenvector of the matrix $P^{-1}AP$ associated with α .	[4]
	(ii)	If $d = gcd(a,b)$, then prove that there exists $u, v \in \mathbb{Z}$ such that $d = au+bv$ where a, b are two non zero integers.	[6]
(a)	(\cdot)	Ear a $b \in \mathbb{N}$ define a b if and only if $a^2 + b$ is even Drove that defines an	

- (c) (i) For $a, b \in \mathbb{N}$, define $a \sim b$ if and only if $a^2 + b$ is even. Prove that \sim defines an equivalence relation. [5]
 - (ii) If a, b, c are positive real numbers, prove that $a^4 + b^4 + c^4 \ge abc(a + b + c)$. [5]

(d)	(i)	If $2\cos\theta = x + \frac{1}{x}$ and θ is real, prove that $2\cos n\theta = x^n + \frac{1}{x^n}$, <i>n</i> being an integer.	[5]
	(ii)	Prove that a mapping $f: X \to Y$ is one-to- one iff $f(A \cup B) = f(A) \cup f(B)$.	[5]
(e)	(i)	Let $X = \{1,2,3\}$. Find all equivalence relations on X.	[6]

(ii) Show that the number of primes is infinite.

[4]