B.A/B.Sc. ${ }^{\text {st }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH1CC02 (Algebra)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
 Candidates are required to write their answers in their own words as far as practicable.
 [Notation and Symbols have their usual meaning]

1. Answer any six questions:
 $6 \times 5=30$

(a) Show that there does not exist any surjective map from a set X to its power set $\mathcal{P}(X)$.
(b) If α, β, γ are the roots of the equation

$$
\begin{equation*}
x^{3}-7 x^{2}+x-5=0 \tag{5}
\end{equation*}
$$

find the equation whose roots are $\alpha+\beta, \beta+\gamma, \gamma+\alpha$.
(c) Show that for all odd integers $n, \operatorname{gcd}(3 n, 3 n+2)=1$.
(d) Calculate the Sturm's function and locate the position of the real roots of the equation $x^{3}-3 x-1=0$.
(e) Show that $\left\{\left(1, \alpha, \alpha^{2}\right),\left(1, \beta, \beta^{2}\right),\left(1, \gamma, \gamma^{2}\right)\right\}$ is a linearly independent subset of \mathbb{R}^{3} for all distinct real numbers α, β, γ.
(f) State and prove De Moivre's theorem for integral values of index.
(g) Show that the eigenvalues of a real symmetric matrix are real. Is the converse true? Justify your answer.
(h) If p is prime and p divides $a b$, where a and b are integers. Prove that either p divides a or p divides b.

2. Answer any three questions:

$$
10 \times 3=30
$$

(a) (i) For any eigenvalue α of matrix $A=\left(a_{i, j}\right)_{n \times n}$, show that the set of all eigenvectors of A belonging to α is a subspace of \mathbb{R}^{n}.
(ii) State Caley-Hamilton theorem. Using it, determine the inverse of the matrix, [1+5] $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
(b) (i) Let X be an eigenvector of an $n \times n$ real matrix A associated with an eigenvalue α. Prove that $P^{-1} X$ is an eigenvector of the matrix $P^{-1} A P$ associated with α.
(ii) If $d=\operatorname{gcd}(a, b)$, then prove that there exists $u, v \in \mathbb{Z}$ such that $d=a u+b v$ where a, b are two non zero integers.
(c) (i) For $a, b \in \mathbb{N}$, define $a \sim b$ if and only if $a^{2}+b$ is even. Prove that \sim defines an equivalence relation.
(ii) If a, b, c are positive real numbers, prove that $a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)$.
(d) (i) If $2 \cos \theta=x+\frac{1}{x}$ and θ is real, prove that $2 \cos n \theta=x^{n}+\frac{1}{x^{n}}, n$ being an integer.
(ii) Prove that a mapping $f: X \rightarrow Y$ is one-to- one iff $f(A \cup B)=f(A) \cup f(B)$.
(e) (i) Let $X=\{1,2,3\}$. Find all equivalence relations on X.
(ii) Show that the number of primes is infinite.

